
Table of contents

Credits
Registration infos

Basic concepts
Line editing
Special keys
Using mouse
Configuration
Prompt and tick recognition

Triggers
Macros
Translations
Variables
Meta-commands
Assign
Aliases
Expression evaluation
Programming ELF
Advanced programming

ELF
A Client for playing MUDs

Written by Alfredo Milani-Comparetti ã 1995-96

Many thanks to all those who helped me writing this piece of software, unconditionally testing it
and morally supporting its development, since when it appeared to be simply a dream till now

that it appears in the final release!
Thanks to Giovanni Gargani (Thanatos) for its DALE, the program that introduced me to the

world of MUDs.
A very special thank to Agostino Fanti (Pindus) for his endless suggestions, for his faith in the
good working of the darkest version of this program, for his patience in tolerating my typical

programmer's strange points of view, and for his being... himself :-)
Many many thanks to those who helped ELF spreading in the world :-)

Basic concepts

ELF is a program to play MUDs. The basic idea was given by DALE, a
program for playing DikuMUD's written by Giovanni Gargani.

My wish to write a completely mine program, as well as the need to be able to
add anything I would have ever liked to, brought ELF to the light.

ELF comes to you with a full package of triggers and a list of MOBs and
OBJECTs with the corresponding translation (The Ghost of Brackenred=bones).

To make a long story short: use ELF and let me know what you like or not.

MAIN FEATURES:

- full ANSI colours support
- command line editing with history, insert e delete
- buffered and unbuffered operating mode
- SCROLL-BUFFER with colours
- macros, triggers, variables and aliases
- easy translation of long names
- multiple commands on the same line
- user-friendly on-line editing of macros, triggers, variables and aliases
- the ability to enable/disable each single trigger
- the ability to automatically recognise the length of the tick, showing when it will

end
- user-defined variables inside macros, triggers, and commands
- file handling commands and functions
- special meta-commands like @IF, @SKIP, @BEEP, @CALL, @WHILE and

@OUTSTR
- expression evaluation with functions like @TIME, @TICK, @ONLINE and

@IDLE
- functions @CRY and @DCRY to encrypt and decrypt some text using a key
- advanced programming by using time in your calculations (@TIME, @TICK,

@ONLINE and @IDLE)
- LOCAL variables
- full LOG support
- user definable windows with colours and advanced mouse support
- macros linked to the mouse
- a toolbar to easily manage multiple instances of ELF connected to various servers

Elfred

Line editing

You can use left and right arrows, as well as insert and delete any character
you like.

By pressing <ESC> you can clear the text entered.
There are two operating modes for editing: EDITING and DIRECTIONS.

Keys definition:

EDITING MODE DIRECTIONS MODE
HOME go to start of line previous command
END go to end of line next command
PAGE-UP send UP command
PAGE-DOWN send DOWN command
LEFT char left send WEST command
RIGHT char right send EAST command
UP previous command send NORTH command
DOWN next command send SOUTH command
CTRL-LEFT word left left char
CTRL-RIGHT word right right char
CTRL-HOME go to start of line go to start of line
CTRL-END go to end of line go to end of line

NOTE: by pressing <CTRL-CANC> some keys are overridden and their meaning
changes both in EDITING and DIRECTIONS mode to:

HOME go to start of line
END go to end of line
LEFT left char
RIGHT right char
UP previous command
DOWN next command
CTRL-LEFT previous word
CTRL-RIGHT next word

Pressing <CTRL-CANC> again the keys definition reverts to normal.

NOTE: the effect of <CTRL-CANC> automatically ends when the line is sent to
the MUD.

See also, Special keys.

Triggers

What is a trigger?
Well... when you are playing MUDs you send commands and receive

messages.
When some messages arrive, you do specific actions (send specific

commans).
Some messages occur often and the related actions are always the same.
If you receive a message telling you that you're hungry, you issue a command

to eat something.

A trigger helps you in this job by comparing a sequence of characters with
every line coming from the MUD. If a match is found then the releated commands
are sent to the MUD.

Some messages vary slightly (they are not static like 'You are hungry.'). For
example a message might look like 'Elfred starts following you.' or 'Velle starts
following you.'.

In such case you still want to issue some commands (like 'group Elfred' or
'group Velle') and a trigger ought to be useful. It does!

You may define a trigger containing variable parts (also referenced as
parameters). In the example above, 'Elfred' and 'Velle' are variable parts.

ELF recognises variable parts via the special character '*' (much like DOS'
DIR command does). So, if you want to issue some commands when 'anybody
starts following you.' you simply have to define a trigger activated (triggered :-))
by '* starts following you.'. The special character '*' may appear several times in a
trigger to manage complex messages with several variable parts ('Elfred hits Velle
very hard.' can be recognised by '* hits * very hard.').

If you use variable parts in your triggers (but the same thing may be done
with aliases) you'll obviously want to be able to modify the related commands
accordingly. That can be achieved via variable parts extraction.

There are two ways to achieve variable parts extraction:
1 by using the special character '%' followed by some specifiers;
2) by using a function (@PARMS or @PARMN depending on the kind of parameter

you need to extract: numeric o string).

The two methods are both valid and recognised by ELF, but with some slight,
but still important, differences.

First of all, let's see how to use both methods.

The special character '%' can be put in the commands related to a trigger
exactly where the variable part ought to be inserted. The first parameter (variable
part) is referenced by '%1a', the second by '%2a' and so on.

In the case of a trigger activated by '* starts following you.', the related
command might be 'group %1a'.

Let's see how it works!
ELF receives 'Elfred starts following you.'.
Checks it with all defined triggers and matches it with '* starts following

you.'.
ELF looks at the commands related to the activated trigger ('group %1a') and

finds the special character '%'.
Before issuing such command to the MUD, ELF extracts the specified

variable part and builds the command 'group Elfred' that, finally, can be sent to the
MUD.

The special character '*' matches any characters sequence (even an empty
one).

We spoke about specifiers. The '%' character must be followed by some
specifiers that instruct ELF on which parameter to extract and how.

Such specifiers are built up in the following way:
- an optional number between '1' and '9' that indicates which parameter

you want (when you use multiple '*'). If this number is not specified '1'
is used by default;

- an optional '=' character that instructs ELF not to remove trailing and
leading spaces from the variable part. If this character is not specified,
spaces are removed by default;

- a mandatory character indicating how the variable part must be
extracted:

- '%a' that means: ALL the variable part
- '%t' that means: TRANSLATE the variable part
- '%f' that means: the FIRST word of the variable part
- '%l' that means: the LAST word of the variable part

- '%x' that means: the WHOLE line.
This must be used with great care, because a very long line
might be truncated.

So, valid commands might look like:
- 'group %t'
- 'group %1t'
- 'group %a'
- 'group %1=a'

The alternate method to do variable parts extraction is via the functions
@PARMS and @PARMN.

Those functions must be inside an expression. That means that you can't issue
a command like 'group @PARMS(1t)' because this doesn't involve an expression
evaluation.

On the other side, when you issue a meta-command, ELF uses expressions
evaluation to pick the arguments of the meta-command and so you're free (and
encouraged) to use @PARMS and @PARMN instead of '%'.

The argument to those functions is the same as the specifier used after '%' (as
listed above).

So valid uses of @ParmS and @ParmN might look like:
- @TempS=@ParmS(t)
- @OUTSTR "Hello "+@Parms(1=a)
- @num=@ParmN(2a)

Remember that @ParmS returns a string value and @ParmN returns a
numeric value.

You can enable/disable ALL triggers at once with the checkbox in the main
window named TRIGGERS ON.

NOTE: triggers are checked in the same order you see them during editing. By
using this feature, you can build complex behaviours. E.g.: you might use a
trigger activated by '*', that means always, to clear some variables to be
used by other triggers.

In this way you can have triggers excluding each other, by using variables to

control the flow.

INFORMATION: we can specify a minimum time (seconds) between trigger's

activation. This way we can avoid keeping activating a trigger
a lot of consecutive times.
If, for instance, we set a trigger to fill a barrel whenever we
see a fountain, we might want to set the minimum time
between activations to 300 seconds, being, thereafter, able to
move around the fountain without keeping on filling the
barrel.
In the same way, we might set the trigger to waste MANA (for
TICK's recognition) in a way so that it doesn't activate before
10 seconds after the last activation. In this way we can manage
network lags.

INFORMATION: it is possible to set a delay between the matching of the trigger
and the sending of the command to the MUD. In this way if,
for example, we are sleeping, we have the time to wake and
stand up.

There are several modifiers that let you fine tune your trigger:

CHECK COMPLETE LINES
REMOVE ORIGINAL LINE
ENABLE RE-CHECKING ON THE SAME LINE
CHECK FOR PROMPT
LAST TRIGGER TO CHECK IF ACTIVATED
TRIGGERS ACTIVATED BY '*'
ORDERED EXECUTION OF TRIGGERS
TRIGGER'S QUANTITY RELATED TO SPEED

CHECK COMPLETE LINES

The matching of the trigger has to take place only when a whole line has been
received.

See also, CHECK COMPLETE LINES.

REMOVE ORIGINAL LINE

The matched line must be neither showed nor archived in the SCROLL-
BUFFER.

This option is effective only when CHECK COMPLETE LINES is on.

See also, Triggers, REMOVE ORIGINAL LINE.

ENABLE RE-CHECKING ON THE SAME LINE

ELF checks triggers at the end of every line and whenever it is idle (no
characters are arriving from the MUD and no key is pressed).

By default it avoids re-checking a trigger on the same line.
If you want to re-check a trigger on a line where it has been already checked,

use this option.
This option is very useful for "time-dependant" triggers (those activated by

'*'), that don't care what characters have been received.

See also, REPEATED RECOGNITION OF A TRIGGER ON THE SAME
LINE.

CHECK FOR PROMPT

If this option is enabled, ELF checks for the presence of the prompt, whatever
pattern has been set for matching.

This is useful for fast and easy prompt recognition.

See also, Triggers.

LAST TRIGGER TO CHECK IF ACTIVATED

If a trigger is activated and it has this option enabled, no more triggers will be
checked for that line.

USE WITH CARE!!!

See also, LAST TRIGGER.

Macros

MACROs are character sequences assigned to special keys.
If a macro is set as AUTO-EXECUTABLE it will be directly sent to the MUD

without interfering with the text in the editing buffer; otherwise it will be appended
to it.

MACROs can contain variables that will be expanded at execution time. A
macro like 'GET ALL.COIN @DEAD' might be used after every death to get
money from the corpse. Of course, we must have assigned the right value to the
variable @DEAD when we have found someone's death (by using a trigger).

Special keys

<CTRL-B> enable/disable buffered input mode

<CTRL-E> executes @EDITGROUP
<CTRL-I> to read the configuration of another playing character
<CTRL-J> view/edit mouse actions
<CTRL-K> sends to the MUD any string. It is possible to use special

chars, by using '#' followed by the ASCII code of the char
('h#97llo#13' sends 'hello' followed by the <ENTER>
code)

<CTRL-L> open/close LOG
<CTRL-N> resets tick's estimated duration to 75 seconds
<CTRL-O> view/edit macros
<CTRL-P> to connect
<CTRL-R> view/edit translations
<CTRL-T> view/edit/enable trigger
<CTRL-V> view/edit variables
<CTRL-Y> view/edit aliases
<CTRL-CANC> temporarily turns to EDITING editing mode. To step back

to DIRECTIONS editing mode either press <CTRL-
CANC> once more or press <ENTER>

<SHIFT-TAB> turns to HIDDEN input and back
<PAUSE> FREEZEs receiving chars from the MUD

See also, Line editing.

Translations

MUD uses several names to represent and interpret the different objects and
characters. Whenever a description of something we are watching appears, MUD
generally uses an extended description.

Yet if we wish to capture that object we often realise that its reduction to a
single word may be difficult. What we generally do is to ask its name by
SHOUTing to the world and waiting. If the object is unusual we'll be in the same
situation in a few days. ELF obviates all this by managing a database of
translations from extended to short name.

A different case, more frequent and easier to automate, needing the translation
of an extended into a short name, occurs whenever we kill a character such as, for
instance, 'The Ghost of Brackenred'. The moment he dies we'll want to get
automatically the money from its body or whatever else. In such cases we'd wish
ELF would use the correct name for each character. The translation table allows
solving this problem. Using the '%t' parameter when writing the trigger we'll force
ELF to translate 'The Ghost of Brackenred' into the corresponding short name
'bones'.

Whenever ELF finds a non-recorded extended name, it automatically creates a
short name using the extended name's last word. In this case, however, ELF will
remember that such a name is unsafe and when exiting the program ELF will
check for unsafe names, in which case it will open a special window to validate all
the names in the database.

The window will list all the translations the program knows. The unsafe ones
will be highlighted in red.

Variables

ELF allows you to use as many variables as you like. Variables can be used to
speed up frequently used commands.

EXAMPLE: if the IT variable has the value DEATH-KNIGHT, the command CAST
'METEOR SWARM' @IT, will be converted to CAST 'METEOR
SWARM' DEATH-KNIGHT.

Hereafter I'll show you a better example of using variables:

- let's define a trigger named DEATH so that it recognises a MOB's
death ('* is dead. R.I.P.');

- let's define the associated command the following way:
@dead="%t" ^ get all.coins @dead ^ save

- when the trigger will be activated, the command will be expanded
and MOB's long name will be translated to the short name (%t).
Thereafter the commands will be sent to the MUD;

- the first command ('@dead="%t"') is an assignment meta-command;
ELF will set DEAD variable to MOB's name; it is a meta-command
because it WON'T be sent to the MUD, as it is an internal command
directly understood by ELF;

- when ELF will execute 'get all.coins @dead', the DEAD variable
will be substituted by its value, so that, if the ghost of brackenred
died, @dead will have been given the value 'bones', and the
command will be changed to 'get all.coins bones';

- when the trigger has been correctly matched and executed, we'll be
able to get all from the corpse by using a MACRO like 'get all
@dead';

Variables exist throughout ELF's execution and are saved, with their content,
to disk when exiting the program.

When you'll use ELF again, ALL the variables will resume the values they
had the last time we used the program.

NOTE: variables MUST be manually DEFINED. They are not automatically
defined if not existing. I.e.: if DEAD isn't a variable, '@DEAD="pippo"'
won't be recognised as an assignment meta-command and will be sent AS
IS to the MUD.

INFORMATION: you can monitor whatever variable you like. Use the option
MONITORIZED. Monitorized variables are shown right
above the horizontal toolbar. The size of the panel used for
monitorized variables changes dynamically according to the
higher Y value used by monitorized variables.

ATTENTION: the most common error is that of not writing the '@' right before
the variable name. Beware!

See also, Static variables, Variables used by ELF.

Meta-commands

ELF recognises META-COMMANDS.
When we send a command like: 'get all.coins bones', we are sending a

command to the MUD.
Commands starting with '@' are called META-COMMANDS.
META-COMMANDS are not sent to the MUD, but, on the contrary, they are

internally interpreted by ELF for special purposes. E.g.: @BEEP sends nothing to
the MUD, but plays a short sound.

META-COMMANDS known to ELF are:

assign
@ADDGROUP
@BEEP
@CALL
@CLEARGROUP
@DELAY
@EDITGROUP
@ENDW
@FCL
@FWR
@FWRITE
@IF
@LOG
@NEWLINE
@NLOCAL
@OUTMSG
@OUTSTR
@QUEUE
@REM
@REMGROUP
@SEND
@SKIP
@SLOCAL
@TOCLIP
@WADD
@WCLEAR
@WCLOSE
@WHIDE

@WHILE
@WINSERT
@WPUT
@WSHOW

You can view this list ordered by type

Meta-commands

ELF recognises META-COMMANDS.
When we send a command like: 'get all.coins bones', we are sending a

command to the MUD.
Commands starting with '@' are called META-COMMANDS.
META-COMMANDS are not sent to the MUD, but, on the contrary, they are

internally interpreted by ELF for special purposes. E.g.: @BEEP sends nothing to
the MUD, but plays a short sound.

META-COMMANDS known to ELF are:

assign

Flow control

@CALL
@ENDW
@IF
@QUEUE
@SKIP
@WHILE

Group

@ADDGROUP
@CLEARGROUP
@EDITGROUP
@REMGROUP

User windows

@WADD
@WCLEAR
@WCLOSE
@WHIDE
@WINSERT
@WPUT
@WSHOW

Sounds and output

@BEEP
@OUTMSG
@OUTSTR
@TOCLIP

Files

@FCL
@FWR

Miscellaneous

@ASSIGN
@DELAY
@FWRITE
@LOG
@NEWLINE
@NLOCAL
@REM
@SEND
@SLOCAL

You can view this list ordered by name

@FWRITE

@FWRITE <file>,<text> writes <text> at the end of <file>.

ATTENTION : @FWRITE doesn't automatically insert an end of line. You have
to add #13 to do so.

See also, Meta-commands.

@ASSIGN

@ASSIGN(<variable-name>,<expression>) assigns the value of the
<expression> to the specified variable. <variable-name> must be of type string.
<expression> must be of the same type of the variable assigned to.

@ASSIGN("num",123)
acts like
@num=123

@ASSIGN("TempS","Hello "+"world")
acts like
@TempS="Hello "+"world"

The advantage is that the name of the variable may be changed during
execution and thus vary dynamically.

See also, Meta-commands, assign.

@QUEUE

@QUEUE <delay in seconds>,<commands>

Executes the specified commands after the specified number of seconds.
Consider that the commands are read from a string expression, therefore you

can store them in a variable or write them directly.
You may encounter some trouble when using multiple commands. Consider

that @CHR(94) inserts in your string expression the "^" character that is what is
needed to separate two lines. If you want to insert a """ character (double-quotes),
use @CHR(34).

See also, Meta-commands, @CALL.

@DELAY

@DELAY <delay in milliseconds>

See also, Meta-commands.

@FWR

@FWR <id>,<text> writes text in the file identified by id.

See also, Meta-commands, FILE BASICS.

@FCL

@FCL <id> closes the files identified by id.

See also, Meta-commands, FILE BASICS.

@CONNECT

@CONNECT <name> attempts to connect to the specified MUD. <name> is
a string containing the name of one of the MUDs known to ELF in the connection
dialog. When the connection is established, the alias OnConnect is called.

See also, Meta-commands, @DISCONNECT.

@DISCONNECT

@DISCONNECT closes the connection to the current MUD. If no MUD is
connected, nothing happens. When disconnection has taken place, the alias
OnDisconnect is called.

See also, Meta-commands, @CONNECT.

@TOCLIP

@TOCLIP "text" puts text in the CLIPBOARD.

See also, Meta-commands.

@SEND

Evaluates the subsequent string expression and sends it to the MUD,
translating special characters ("ATZ#13" is translated to "ATZ" followed by char
whose ASCII code is 13).

NOTE: after the string, CR is NOT automatically appended. If desired, it must be
specified, ending the string by '#13'.

See also, Meta-commands.

@OUTSTR

Apprises the subsequent string expression and outputs it to the screen. The
string may contain special codes, specified by the symbol '#' and the corresponding
ASCII code.

EXAMPLE: @OUTSTR "#27[41mTest" outputs to the screen the word 'Test' in
red, since an ESCAPE sequence was specified, setting a red
background.
The ESCAPE sequence must begin by the code for the ESCAPE
character (=27).

See also, Meta-commands.

@OUTMSG

Apprises the string subsequent expression and outputs it to the screen's
bottom line (the copyright one).

See @OUTSTR

See also, Meta-commands.

@ADDGROUP

Apprises the subsequent string expression and adds it to the group, avoiding
duplications.

See also, Meta-commands.

@REM

The rest of the line after this meta-command is ignored.
Useful to insert a comment.

See also, Meta-commands.

@REMGROUP

Apprises the subsequent string expression and removes it from the group.

See also, Meta-commands.

@EDITGROUP

Use this to interactively edit the members of your group (same as CTRL-E).

See also, Meta-commands.

@CLEARGROUP

Cancels all present group members.

See also, Meta-commands.

@LOG

Changes the name of LOG FILE and attempts to open it immediately. If an
error occurs, ELF will go back to the former name and, if in case, attempts to
reopen it. (see CTRL-F).

See also, Meta-commands.

@BEEP

It BEEPS :-)))
This meta-command has a double syntax:

- @BEEP
- @BEEP <soundfile>, where <soundfile> can be .MID or .WAV

See also, Meta-commands.

@SLOCAL

@SLOCAL var1,var2,...,@varN creates @VAR1, @VAR2, up to @VARN
as LOCAL STRING variables. Such variables substitute for the existing ones by
the same name and may act like any other variable. LOCAL variables exist for the
entire execution of the series of linked commands. Should a @CALL be executed
or an alias be called, local variables would survive in such sub-programs (where
other local variables may be defined, even by the same name).

See also, Meta-commands.

@NLOCAL

Acts like @SLOCAL, but defines NUMERICAL variables.

See also, Meta-commands.

@CALL

@CALL @VariableName executes the commands contained in the referenced
variable. Commands may be separated with #13 or with '^'.

This command is very useful to define sequences of commands that can
change at run-time.

See also, Meta-commands, Variables used by ELF.

@SKIP

@SKIP n causes the next n commands to be skipped (not executed).

See also, Meta-commands.

@IF

Apprises the following numerical expression. If its value equals 0, then the
subsequent two commands will be skipped.

EXAMPLE: @IF @dead="lamia"
get all.po @dead
@SKIP 1
get all.coi @dead
save
This sequence of commands, that might refer to the trigger activated
by someone's death, checks if the dead is a LAMIA.
If so, then all potions are taken from its body, otherwise all coins are
taken.
If it is not a LAMIA, the two commands (get all.po @dead e SKIP 1)
following the @IF are skipped. If it is a LAMIA, ALL the commands
are executed.
In this example @SKIP 1 has the same effect of an IF-THEN-ELSE
structure.
Please note that the SAVE command is executed in both cases.

See also, Meta-commands.

@WHILE

The @WHILE meta-command is paired by @ENDW. It is useful to create a
loop.

@WHILE loop CAN'T BE NESTED.

EXAMPLE: @SLOCAL x
@x=1
@WHILE @x<=10
@OUTSTR @NTOS(@x)
@x=@x+1
@ENDW

NOTE: be careful when writing such loops. If you don't update the variables
involved in the test, it will lead to an endless loop.

See also, Meta-commands.

@ENDW

See @WHILE

See also, Meta-commands.

@WCLEAR

@WCLEAR <id> clears user window id.

See also, Meta-commands, PROGRAMMING USER WINDOWS.

@WCLOSE

@WCLOSE <id> clears user window id.

See also, Meta-commands, PROGRAMMING USER WINDOWS.

@WHIDE

@WHIDE <id> hides user window id.

See also, Meta-commands, PROGRAMMING USER WINDOWS.

@WINSERT

@WINSERT <id>,<line #>,<text> writes text in user window id on the line #.
The following lines are moved down. The first line number is 0.

See also, Meta-commands, PROGRAMMING USER WINDOWS.

@WPUT

@WPUT <id>,<line #>,<text> writes text in user window id on the line #.
The first line number is 0.

See also, Meta-commands, PROGRAMMING USER WINDOWS.

@WADD

@WADD <id>,<text> writes text in user window id on the line beyond the
last one.

See also, Meta-commands, PROGRAMMING USER WINDOWS.

@WSHOW

@WSHOW <id> shows (unhides) user window id.

See also, Meta-commands, PROGRAMMING USER WINDOWS.

@NEWLINE

@NEWLINE "text" changes the content of the line on which triggers are
being checked.

After executing @NEWLINE "text", subsequent triggers will be checked on
the new text.

EXAMPLE: text to be checked: "This is the original line"
trigger 1 checks "This is the original line"
trigger 2 checks "This is the original line"
trigger 2 executes @NEWLINE "Replacement!"
trigger 3 checks "Replacement!"

NOTE: if your MUD sends to you text and/or commands pasted to the prompt, you
can define a trigger that finds the prompt, outputs it to the screen with
@OUTSTR and then issues @NEWLINE "<new line>", where <new line>
is the original trigger line with the prompt stripped.
Just remember that the last trigger will have to output such a line with
@OUTSTR and have Last trigger to check if activated ON to avoid that
ELF outputs the original line to the screen.

See also, Meta-commands.

ANSI color codes

ANSI color codes are specified by using an ESCAPE sequence.
In whatever you send to the screen you can add ANSI color codes (even

modifying the lines received from the MUD via @NEWLINE), thus highlighting
text, names, etc...

An escape sequence starts with the ESC character (ASCII code 27, thus #27)
followed by '[', a series of one or more COLOR CODES separated by ';', and a 'm',

'#27[33;44m' sets the background color to BLUE and the foreground to
YELLOW.

Recently have been added a lot of new functions that make easier to work
with colors. These functions are:

@BGxxx from @BGBlack to @BGwhite. Set the background color
accordingly.

@FGxxx from @FGBlack to @FGWhite. Set the foreground color
accordingly.

@HiColors selects high intensity colors. This code is almost unuseful,
due to the direct color color (what I call IBM COLOR
CODES).

@NormalColors resets background and foreground colors to their default
values.

@PushColors saves colors to a stack for later retrieving. Useful to
temporarily change a color, being able to restore the old one
later in the line.

@PopColors retrieves the colors previously saved to the stack.

Using these new functions, the same result as '#27[33;44m' , that sets the
background color to BLUE and the foreground to YELLOW, is achieved by
@BGBlue+@FGYellow.

ANSI CODES: - the basic colour codes are:
- 0 --> black
- 1 --> red
- 2 --> green
- 3 --> yellow
- 4 --> blue
- 5 --> magenta
- 6 --> cyan

- 7 --> white
- add 30 to get a FOREGROUND colour
- add 40 to get a BACKGROUND colour

IBM COLOURS : - standard IBM colors are 16:
- 0 --> black - 1 --> blue
- 2 --> green - 3 --> cyan
- 4 --> red - 5 --> magenta
- 6 --> brown - 7 --> light grey
- 8 --> dark grey - 9 --> light blue
- 10 --> light green - 11 --> light cyan
- 12 --> light red - 13 --> light magenta
- 14 --> yellow - 15 --> white

- add 50 to get a FOREGROUND colour using these codes
- add 70 to get a BACKGROUND colour using these codes

Assign

A command like '@dead="bob"' assigns the value bob to the variable DEAD.

ATTENTION: if such a variable doesn't exist, the META-COMMAND won't be
recognised and will be sent to the MUD as is.

NOTE: if the assign command is recognised, nothing will be sent to the MUD.

Assigning value to variables, you can take advantage of ELF's capability of
evaluating expressions, both numerical and string type.

EXAMPLE: (complex, but nice)
- let's suppose that both DUMMY and TEMPS are existing variables

declared with type STRING;
- let's create a trigger:

- activated by:
*says: Let me pass, you beggars!

- and that executes:
@dummy="%t"
cast 'power word kill' @dummy
@TempS="Beggar?!? To whom?!? You silly
"+@dummy+"! :-)"
gos @TempS

- you guess what follows :-)))

IMPORTANT: you can use a special string assign command.
Instead of '=' you can use '$'.
By using '$' you tell ELF to assign WHATEVER follows to the
variable.
In this way you can assign special characters received from the
mud, such as '"' and so on.

See also, @ASSIGN.

Aliases

An ALIAS is a sequence of commands with optional parameters interpreted
internally by ELF.

NOTE : aliases are checked in the same order they appear in the configuration
page.
By using this feature you can create complex behaviours.
You can, for example, define an alias activated by the pattern 'help *
barely,*' and another one activated by the pattern 'help *,*'. In this way
you can distinguish between 'HITS' and 'BARELY HITS' very easily and
calling the same alias.

It is important to know that, unlike triggers, when an alias is executed, no
more aliases are checked.

Using an ALIAS you can create a new command with parameters.
An ALIAS is a command recognised by ELF because it starts with '<'.
Basic to the ALIAS is the PATTERN which identifies the ALIAS.
The PATTERN defines both ALIAS's name and its grammatical structure.

EXAMPLE: I want to get something from my leather pouch (that I hold on my
back) and keep it in my inventory in place of another thing. I'll have to
execute some commands like these:

rem pou^get staff pou^put sword pou^wea pou
If now I would like to exchange two other objects, I'd have to repeat
almost all these commands with minor changes.
Let's define an ALIAS:

- PATTERN: swap * *
This is a PATTERN defining ALIAS's NAME
(SWAP) and its two parameters (the two '*').
If ELF recognises an ALIAS's PATTERN, then it
executes the related command. The command can
have parameters much like triggers). These
parameters will be substituted before executing.

-
COMMANDS:

rem pou

take %1a
put %2a pou

wea pou'
The '%' identifies a parameter. The following
number indicates which parameter to use (every '*'
means a parameter). The ending 'a' means that the
parameter must be taken without further changes.
You can even use parameters like '%1t', where 't'
forces parameter's translation (The Ghost of
Brackenred becomes bones)

If you write '<swap sword staff', you'll get exactly what we liked to
get.

NOTE: ALIAS's definition is built up using a PATTERN, and not in an easier way,
to avoid limiting ALIAS's power.
For example, I could have forced the parameters to be separated ALWAYS
by blanks, but, then, what about a parameter like 'hello world'?
In the former example we could have defined a pattern 'swap *,*', allowing
the usage of parameters with blanks inside.

WARNING: if you define an ALIAS with the pattern 'test *' and then you try to
execute '<test ' ('test' followed by two blanks), the alias WON'T be
activated because ELF always removes trailing and leading spaces
from commands. So your '<test ' becomes '<test' and there is no
pattern matching...
To avoid this, use a pattern like this: 'test "*"'. In this way you'll call
the alias with '<test " "' and everything will be right :-)

See also, ALIASES UNVEILED, Aliases used by ELF, Extended pattern.

Extended pattern

With this option you can force ELF to expand the variables contained in the
pattern of an alias each time the pattern is checked.

In this way you can parametrise aliasesaliases in a very powerful way.
Suppose that you want to trap <OnWinClick.
You might want to write an alias that traps it only for a specific window (say

the one whose id is contained in the @EqWin variable).
Without using this flag you ought to write such an alias in this way:

Pattern: <OnWinClick *,*,*
Commands: @IF @EqWin=%1a

@OUTSTR "Right window!"

Problems arise if you would like to handle <OnWinClick for one more
windows... You would have to add new tests in the commands of the alias above.

By using the extended pattern option you could solve all of these problems.
You simply had to define the former alias in this way:

Pattern: <OnWinClick @EqWin,*,*
Commands: @OUTSTR "Right window!"

A similar alias can be defined for every other window you want, without
interfering each other!

ATTENTION: this flag is very powerful but slows ELF down because ELF has to
manipulate the pattern every time it needs to check it. To reduce
such overload you can put such aliases near the bottom of the
aliases. In this way it is likely that other aliases are recognised
earlier in the list, thus preventing ELF from further pattern
checking.

Expression evaluation

Whenever ELF expects numerical or string values it appraises the expressions
through operators and FUNCTIONS.

String operators
Numeric operators

Functions

String operators

+ --> links 2 strings
> --> returns 1 if the first string is greater than the second; 0 otherwise
< --> returns 1 if the first string is lesser than the second; 0 otherwise
= --> returns 1 if the first string equals the second; 0 otherwise
<> --> returns 1 if the first string differs from the second; 0 otherwise
<= --> returns 1 if the first string is lesser than or equal to the second; 0

otherwise
>= --> returns 1 if the first string is greater than or equal to the second; 0

otherwise

See also, Expression evaluation.

Numeric operators

+ --> adds 2 numbers
 - --> subtracts 2 numbers
* --> multiplies 2 numbers
/ --> divides 2 numbers (integer division)
--> executes MOD operator (12#5=2)
| --> ORs two numbers
& --> ANDs two numbers
> --> returns 1 if the first number is greater than the second; 0 otherwise
< --> returns 1 if the first number is lesser than the second; 0 otherwise
= --> returns 1 if the first number equals the second; 0 otherwise
<> --> returns 1 if the first number differs from the second; 0 otherwise
<= --> returns 1 if the first number is lesser than or equal to the second; 0

otherwise
>= --> returns 1 if the first number is greater than or equal to the second; 0

otherwise

See also, Expression evaluation.

Functions

@BGxxx @BGxxx functions let you easily define BACKGROUND colors in
strings that will be output to the screen. xxx can be one of the 16
standard IBM colors.
EXAMPLE: to set the background color of some text to LIGHT
RED all you'll have to write will be: @BGLightRed+"text".
If you want to output "Hello Alfredo" on a line where "Alfredo"
has to be written with a MAGENTA background, the command will
look like:
@OUTSTR "Hello "+@BGMAGENTA+"Alfredo"

@CHR returns the char with the corresponding ASCII code (usage:
@CHR(number))

@CRY @CRY(<text>,<key>) encrypts <text> using the specified key. Text
and key are both strings. Returns a string. This function encrypts
text in the range chr(32)..chr(127) (printable characters) returning
text in the same printable range.

@DCRY @DCRY(<text>,<key>) decrypts <text> using the specified key.
Text and key are both strings. Returns a string.

@FGxxx @FGxxx functions let you easily define FOREGROUND colors in
strings that will be output to the screen. xxx can be one of the 16
standard IBM colors.
EXAMPLE: to set the foreground color of some text to LIGHT
CYAN all you'll have to write will be: @FGLightCyan+"text".
If you want to output "Hello Alfredo" on a line where "Alfredo"
has to be written with a red foreground, the command will look
like:
@OUTSTR "Hello "+@FGRED+"Alfredo"

@FOPW @FOPW(<file-name>) opens <file-name> for writing. Returns a
numeric id (0 if an error occurs). If the file already exists, it is
deleted before rewriting it.

@FOPR @FOPR(<file-name>) opens <file-name> for reading. Returns a
numeric id (0 if an error occurs). The file must exist.

@FOPA @FOPA(<file-name>) opens <file-name> for appending. Returns a
numeric id (0 if an error occurs).

@FNRD @FNRD(<id>) reads a number from the file identified by id.
@FSRD @FSRD(<id>) reads a string from the file identified by id.
@FEOF @FEOF(<id>) returns 1 if the file identified by id has reached its

end, 0 otherwise.
@GETDAY returns the day of the month

@GETMONTH returns the current month
@GETYEAR returns the current year
@HICOLORS this function exists only for full compatibility with past versions of

ELF. Subsequent ANSI colors will be shown in high intensity
format. The presence of @BGxxx and @FGxxx functions obsolete
this function.

@IDLE returns the number of seconds since the last key was pressed
@INGROUP checks whether the specified string is a member of your group.

Returns 0 if it isn't, its index in the group if it is (usage:
@INGROUP(string))

@LASTMUD returns the name of the last mud you connected to since when ELF
was opened

@LEN returns string length (usage: @LEN(string))
@MYHP @MYHP returns the value of your HPs that ELF has extracted

from the PROMPT (you must correctly set the relevant parameters
in the general configuration page).

@MYMANA @MYMANA returns the value of your MANA that ELF has
extracted from the PROMPT (you must correctly set the relevant
parameters in the general configuration page).

@MYMOV @MYMOV returns the value of your MOVement that ELF has
extracted from the PROMPT (you must correctly set the relevant
parameters in the general configuration page).

@NORMALCOLORS resets the colors in some output text to default values.
I.e.: @OUTSTR @FGRed+"Hello
"+@NormalColors+"Alfredo" will display "Hello " with a
default background and a red foreground and "Alfredo"
with default background and foreground.

@NTOS converts a number into a string (usage: @NTOS(number))
@ONLINE returns 1 if you are connected to a MUD, 0 otherwise
@PARMS @PARMS(<parameter>) returns the value of a parameter (much

like '%') as a string. @ParmS(2=a) equals to '%2=a' but is faster
and completely avoids maximum string length overflow (255
chars).
Inside the parenthesys you'll have to put the same characters that
you would have put after the '%' sign to extract a parameter in a
trigger or alias.
See trigger for more informations on parameter extraction.
This function has several advantages over the older parameter
extraction method (via the '%' sign). It is faster, has type checking
(@ParmS returns a string value) and IS NOT EXPANDED inside

the commands but during expression evaluation. That means that
you no longer will exceed the maximum length of 255 characters
when referencing a very long parameter. As a side effect, you no
longer will be forced to assign such parameters to temporary
variables to avoid exceeding, thus gaining speed and clarity.

@PARMN @PARMN(<parameter>) returns the value of a parameter (much
like '%') as a number. @ParmN(2=a) equals to '%2=a' but is faster
and completely avoids maximum string length overflow (255
chars).
See @PARMS for more informations.

@POPCOLORS Restores the colors previously saved via @PUSHCOLORS.
@POPUPS @POPUPS("option-1",..,"option-n") displays a popup menu and

returns the name of the selected item. If no item is selected, returns
an empty string.The options must be of type string and may result
from expression evaluation. The popup menu is shown at mouse
position.

@POPUPN @POPUPN("option-1",..,"option-n") displays a popup menu and
returns the index (the first item has an index value of 1) of the
selected item. If no item is selected, returns 0. The options must be
of type string and may result from expression evaluation. The
popup menu is shown at mouse position.

@POS @POS(<text>,<source>,<start>) returns the position of <text> in
the <source> string starting the search from the <start>th character.
Returns 0 if no match is found.

@PUSHCOLORS Saves the colors used at a certain point in an output string for
later recall via @POPCOLORS.
Useful to temporary set some colors inside other unknown
colors.
EXAMPLE: if you want to highlight a word in some text
without interfering with other colors:
@OUTSTR @FGGreen+"Hello
"+@PushColors+@FGRed+"my"+@PopColors+" dear."
will output "Hello " and " dear." with a green foreground color
and "my" with a green foreground color.

@RND @RND(<max>) returns a random value between 0 and max-1. Max
must be in range 0..65000.

@STON converts a string into a number (usage: @STON(string))
@TICK returns the estimated TICK duration in seconds
@TICKS returns the number of TICKs recognised by ELF
@TIME returns the hour in terms of seconds after midnight

@TOTICK returns the number of seconds to the end of the TICK
@WGET @WGET(<id>,<line #>) returns the content of the line of the user

window.
@WLINES @WLINES(<id>) returns the number of lines in the user windows.
@WMAXID @WMAXID returns the highest id allocated at that moment by

ELF for user windows. This is useful to scan all of them together
with @WSTAT.

@WNUM @WNUM(<title>) returns the id of the user window with that title.
Returns -1 if such a window doesn't exist.

@WOPEN @WOPEN(<title>) opens a user window with the specified title
and returns an id. ELF remembers position and dimension
(referenced by title) of the user windows.

@WOPEQ @WOPEQ(<title>) opens a user window with the specified title
and returns an id. If a user window with the same title already
exists then returns that id. ELF remembers position and dimension
(referenced by title) of the user windows.

@WSTAT @WSTAT(<id>) returns a value depending on the visual status of
the user window referenced by id:
0 - doesn't exist
1 - iconicized
2 - hidden
3 - normal
4 - zoomed

@WTITLE @WTITLE(<id>) returns the title of the user window referenced by
id. Returns '' if such a window doesn't exist.

ATTENTION: expressions are appraised irrespective of some operators's priority
over others. Use parentheses to force priority as needed.

You can view this list ordered by group.

See also, Expression evaluation.

Functions

User windows:

@WGET @WGET(<id>,<line #>) returns the content of the line of the user
window.

@WLINES @WLINES(<id>) returns the number of lines in the user windows.
@WMAXID @WMAXID returns the highest id allocated at that moment by

ELF for user windows. This is useful to scan all of them together
with @WSTAT.

@WNUM @WNUM(<title>) returns the id of the user window with that title.
Returns -1 if such a window doesn't exist.

@WOPEN @WOPEN(<title>) opens a user window with the specified title
and returns an id. ELF remembers position and dimension
(referenced by title) of the user windows.

@WOPEQ @WOPEQ(<title>) opens a user window with the specified title
and returns an id. If a user window with the same title already
exists then returns that id. ELF remembers position and dimension
(referenced by title) of the user windows.

@WSTAT @WSTAT(<id>) returns a value depending on the visual status of
the user window referenced by id:
0 - doesn't exist
1 - iconicized
2 - hidden
3 - normal
4 - zoomed

@WTITLE @WTITLE(<id>) returns the title of the user window referenced
by id. Returns '' if such a window doesn't exist.

Parameters handling:

@PARMS @PARMS(<parameter>) returns the value of a parameter (much
like '%') as a string. @ParmS(2=a) equals to '%2=a' but is faster
and completely avoids maximum string length overflow (255
chars).
Inside the parenthesys you'll have to put the same characters that
you would have put after the '%' sign to extract a parameter in a
trigger or alias.
See trigger for more informations on parameter extraction.
This function has several advantages over the older parameter

extraction method (via the '%' sign). It is faster, has type checking
(@ParmS returns a string value) and IS NOT EXPANDED inside
the commands but during expression evaluation. That means that
you no longer will exceed the maximum length of 255 characters
when referencing a very long parameter. As a side effect, you no
longer will be forced to assign such parameters to temporary
variables to avoid exceeding, thus gaining speed and clarity.

@PARMN @PARMN(<parameter>) returns the value of a parameter (much
like '%') as a number. @ParmN(2=a) equals to '%2=a' but is faster
and completely avoids maximum string length overflow (255
chars).
See @PARMS for more informations.

File handling:

@FOPW @FOPW(<file-name>) opens <file-name> for writing. Returns a
numeric id (0 if an error occurs). If the file already exists, it is
deleted before rewriting it.

@FOPR @FOPR(<file-name>) opens <file-name> for reading. Returns a
numeric id (0 if an error occurs). The file must exist.

@FOPA @FOPA(<file-name>) opens <file-name> for appending. Returns a
numeric id (0 if an error occurs).

@FNRD @FNRD(<id>) reads a number from the file identified by id.
@FSRD @FSRD(<id>) reads a string from the file identified by id.
@FEOF @FEOF(<id>) returns 1 if the file identified by id has reached its

end, 0 otherwise.

Date and time:

@GETDAY returns the day of the month
@GETMONTH returns the current month
@GETYEAR returns the current year
@TIME returns the hour in terms of seconds after midnight

System:

@IDLE returns the number of seconds since the last key was pressed
@ONLINE returns 1 if you are connected to a MUD, 0 otherwise
@TICK returns the estimated TICK duration in seconds
@TICKS returns the number of TICKs recognised by ELF

@TOTICK returns the number of seconds to the end of the TICK

Strings and conversions:

@CHR returns the char with the corresponding ASCII code (usage:
@CHR(number))

@LEN returns string length (usage: @LEN(string))
@NTOS converts a number into a string (usage: @NTOS(number))
@POS @POS(<text>,<source>,<start>) returns the position of <text> in

the <source> string starting the search from the <start>th character.
Returns 0 if no match is found.

@STON converts a string into a number (usage: @STON(string))

Color handling:

@BGxxx @BGxxx functions let you easily define BACKGROUND
colors in strings that will be output to the screen. xxx can be
one of the 16 standard IBM colors.
EXAMPLE: to set the background color of some text to
LIGHT RED all you'll have to write will be:
@BGLightRed+"text".
If you want to output "Hello Alfredo" on a line where
"Alfredo" has to be written with a MAGENTA background,
the command will look like:
@OUTSTR "Hello "+@BGMAGENTA+"Alfredo"

@FGxxx @FGxxx functions let you easily define FOREGROUND
colors in strings that will be output to the screen. xxx can be
one of the 16 standard IBM colors.
EXAMPLE: to set the foreground color of some text to
LIGHT CYAN all you'll have to write will be:
@FGLightCyan+"text".
If you want to output "Hello Alfredo" on a line where
"Alfredo" has to be written with a red foreground, the
command will look like:
@OUTSTR "Hello "+@FGRED+"Alfredo"

@HICOLORS this function exists only for full compatibility with past
versions of ELF. Subsequent ANSI colors will be shown in
high intensity format. The presence of @BGxxx and
@FGxxx functions obsolete this function.

@NORMALCOLORS resets the colors in some output text to default values.

I.e.: @OUTSTR @FGRed+"Hello
"+@NormalColors+"Alfredo" will display "Hello " with a
default background and a red foreground and "Alfredo"
with default background and foreground.

@POPCOLORS Restores the colors previously saved via @PUSHCOLORS.
@PUSHCOLORS Saves the colors used at a certain point in an output string

for later recall via @POPCOLORS.
Useful to temporary set some colors inside other unknown
colors.
EXAMPLE: if you want to highlight a word in some text
without interfering with other colors:
@OUTSTR @FGGreen+"Hello
"+@PushColors+@FGRed+"my"+@PopColors+" dear."
will output "Hello " and " dear." with a green foreground
color and "my" with a green foreground color.

Miscellaneous:

@CRY @CRY(<text>,<key>) encrypts <text> using the specified key.
Text and key are both strings. Returns a string. This function
encrypts text in the range chr(32)..chr(127) (printable characters)
returning text in the same printable range.

@DCRY @DCRY(<text>,<key>) decrypts <text> using the specified key.
Text and key are both strings. Returns a string.

@INGROUP checks whether the specified string is a member of your group.
Returns 0 if it isn't, its index in the group if it is (usage:
@INGROUP(string))

@LASTMUD returns the name of the last mud you connected to since when ELF
was opened

@MYHP @MYHP returns the value of your HPs that ELF has extracted
from the PROMPT (you must correctly set the relevant parameters
in the general configuration page).

@MYMANA @MYMANA returns the value of your MANA that ELF has
extracted from the PROMPT (you must correctly set the relevant
parameters in the general configuration page).

@MYMOV @MYMOV returns the value of your MOVement that ELF has
extracted from the PROMPT (you must correctly set the relevant
parameters in the general configuration page).

@POPUPS @POPUPS("option-1",..,"option-n") displays a popup menu and
returns the name of the selected item. If no item is selected, returns

an empty string.The options must be of type string and may result
from expression evaluation. The popup menu is shown at mouse
position.

@POPUPN @POPUPN("option-1",..,"option-n") displays a popup menu and
returns the index (the first item has an index value of 1) of the
selected item. If no item is selected, returns 0. The options must be
of type string and may result from expression evaluation. The
popup menu is shown at mouse position.

@RND @RND(<max>) returns a random value between 0 and max-1.
Max must be in range 0..65000.

ATTENTION: expressions are appraised irrespective of some operators's priority
over others. Use parentheses to force priority as needed.

You can view this list ordered by name

See also, Expression evaluation.

Programming elf

ELF programming is one of the most fascinating, but its most difficult
aspects.

By programming we intend the ability to alter the sequential flow of
commands.

EXAMPLE: by means of a trigger one can identify the death of a MOB. At this
point one can associate the trigger to a series of consequent
commands. Generally one will get coins, all the objects, and/or will
SAVE.
Having played a not very strong magic user, I could not afford to get
everything; thus I chose to get only coins.
Ok thus far. At a certain point, yet, I noticed that LAMIAs carried
potions to cure myself. Very useful! But how about it? Having 107
HP's at level 50, Elfred could not waste time to get BOTH coins AND
potions from lamias, since each time he risked being heavily hit. This
is the time when programming takes over.
I adopted a command, triggered by the death of a MOB, programmed
as follows:

- @dead="%t" <-- to assign MOB's name by executing
translation

- @IF@dead="lamia" <-- to check whether the cadaver was a
lamia

- get all.po lamia <-- if so, get the potions
- @SKIP 1 <-- skip the next command to avoid

wasting time to get coins (lamias are
poor :-))

- get all.coin @dead <-- if the cadaver was not a lamia, get
coins by this command.
This command is the third one
AFTER @IF and, thus, is the one
that is executed when @IF is not
verified

Programming allows automating fully many behaviours and exploiting fully
the traits/needs of one's character.

For Elfred any spared command was an additional POWER WORD KILL and

a lot of spared HP's.

Exploitation of programming for such cases is still quite easy.
Tackling other problems is more difficult.

EXAMPLE: Pindus (a sweet and powerful cleric) had to HOLD the CAVE
FISHER SKULL (anti-drain). You can't hold that skull if you still have
something in your hands. So, you first have to remove your weapon,
than hold the skull and, at last, re-wield the weapon.
Since Pindus uses either a SWORD or a KRISS, the problem was
recognising which weapon he was using.
To solve this problem there are several ways. I'll show you one.
It is very important to create a STRING variable named, for example,
@weapon. We'll choose as its initial value "nothing".
At this point, we'll define a MACRO that will be used to activate the
swap operation:

- @weapon="test" <-- this is necessary to recognise a simple
weapon change from our swap

- rem sword <-- let's try to remove the sword...
- rem kris <-- ...and the kris too

At this point, the MUD will receive both commands and within some
(unknown) time will send the appropriate answers.
Everything will happen in an asynchronous way. I.e.: after REM
SWORD we will not receive IMMEDIATELY the answer from the
MUD showing what happened (=whether we were wielding it or not).
This is the reason why I use to say that ELF must be programmed by
EVENTS.
Now we need 2 triggers to trap both cases:
- trigger for the kris:

- triggered by: "*You stop wielding the ebony kris*"
- commands:

- @IF@weapon="test
"

<-- this check is here to avoid
swapping even when we are just
stopping wielding the kris

- @weapon="kris" <-- let's store the removed weapon
- @CALL @skulla <-- sub-routine that actually swaps

things
- @weapon="nothing" <-- swapping has been recognised. So

we can initialise again the variable.

Please note that this is the only
executed command when
@weapon equals "test"

- trigger for the sword:
- triggered by: "*You stop wielding a sword*"
- commands:

- @IF
@weapon="test"

<-- same as for the kris

- @weapon="sword" <-- let's store the removed weapon
- @CALL @skulla <-- actually do the swap
- @weapon="nothing" <-- same as for the kris

Now we have to define the variable @skulla, that will contain the
sequence of commands needed to hold the skull, that we suppose to be
in our leather pouch.
Please note that at this point the variable @weapon holds the name of
the weapon we were wielding.
The commands contained in the variable @skulla will be the
following:

- rem pou <-- let's get the pouch
- take cave pou <-- let's take the skull out of the pouch
- hold cave <-- let's hold it
- wield @weapon <-- let's wield the weapon we were

using
NOTE: this procedure works fine only if we had only one hand full,

otherwise we wouldn't be able to wield the weapon again.

See also, Advanced programming.

Advanced programming

There are some concepts that must be understood to take full advantage of
ELF's features.

TRIGGERS ACTIVATED BY '*'
ORDERED EXECUTION OF TRIGGERS
REPEATED RECOGNITION OF A TRIGGER ON THE SAME LINE
CHECK COMPLETE LINES
REMOVE ORIGINAL LINE
@AUTOEXEC
@AUTOPC
WHAT TO DO IF A SERIES OF COMMANDS IS TOO LONG
LOCAL VARIABLES
ALIASES UNVEILED
LAST TRIGGER
@SKIP AND @IF
TRIGGER'S QUANTITY RELATED TO SPEED
MOUSE AND SCROLL-BUFFER
STATIC VARIABLES
HOW TO NEST @WHILE-@WEND LOOPS
PROGRAMMING USER WINDOWS
EXTENDED PATTERN RECOGNITION IN ALIASES
FILE BASICS

See also, Programming ELF.

TRIGGERS ACTIVATED BY '*'

A trigger activated by '*' will be ALWAYS activated. Using some kind of
timers we can execute timed operations. It is possible, for example, to SAVE every
5 minutes. Using this feature together with the @IDLE function allows us to create
powerful behaviours. We might, for example, automatically SAVE when no key is
pressed for more than 15 seconds.

See also, Advanced programming.

ORDERED EXECUTION OF TRIGGERS

Triggers are checked in the same order in which they appear in the editing
window.

Any given trigger in the list, set to be activated by '*' (i.e., always), may be
used to initialise some variables needed to control the flow of subsequent trigger
execution.

EXAMPLE: those triggers that manage AUTO-ASSIST recognise the name of the
attacker exploiting a very potent characteristic of aliases.
Thus control of 'HITS', 'BARELY HITS', and so forth, is transferred to
aliases. This could be obtained using TRIGGERS, defining one to
verify 'BARELY HITS' before another that verifies 'HITS'. The
problem arises from the fact that 'BARELY HITS' would be verified
by both triggers.
If a potentially ambiguous trigger is verified, one should store this in a
variable affecting the execution of subsequent related triggers.

See also, Advanced programming.

REPEATED RECOGNITION OF A TRIGGER ON THE SAME
LINE

ELF avoids further verification of a trigger already verified on the same line.
In order to recognise the occurrence of 'Livio' within the line received by

MUD one could simply define a trigger activated by '*Livio*' causing it, for
instance, to emit a @BEEP. Should the line look like 'Livio says....', ELF might
verify the occurrence of triggers whenever it received 'Livio ', 'Livio s', 'Livio sa'
and so on. Let us mention that verification will SURELY occur at least at the end
of the line, while it is LIKELY that it may also occur within it. In order to avoid
continued or multiple @BEEPs or endless eating or drinking, ELF avoids multiple
verification of the same trigger on the same line. If in case one may override this
behaviour for any given TRIGGER.

EXAMPLE: a trigger activated by '*' (thus managing a time behaviour) is the
best example of a trigger to be repeatedly verified on the same line; otherwise it
would be verified only when a new line arrives and not over and over (thus
depending on the line flow arriving from the MUD).

See also, Advanced programming.

CHECK COMPLETE LINES

ELF, if no key is pressed and if there is a pause in the flow of the chars
arriving from the mud, checks triggers even on partially received lines.

This is useful, for example, for logins. Some times it might be necessary to
check triggers only on complete lines.

See also, Advanced programming.

REMOVE ORIGINAL LINE

One might want to change the appearance (even colours) of any incoming
message. Simply use a trigger that identifies the line and instructs ELF not to
SHOW that line. The meta-command @OUTSTR can then be used to remap the
output.

EXAMPLE: immortals speak with mind and a message like this appears:
'::Elfred:: hello boys'. With a trigger activated by '::*::*' on a COMPLETE line
(another useful flag) one can tell ELF to REMOVE the received line and a nice
message can be output, with colours and a text like 'Elfred thinks...'.

For a successful use of such a trigger, CHECK COMPLETE LINES must be
ON, otherwise ELF might check triggers on partially received lines, and messages
like 'Elfred thinks 'he'', instead of 'Elfred thinks 'hello boys'' might arise.

See also, Advanced programming.

@AUTOEXEC

At startup ELF automatically executes @CALL @AUTOEXEC. This is a
useful feature that might be used, for example, to initialise variables.

See also, Advanced programming.

@AUTOPC

Whenever a new configuration is loaded, with CTRL-I or by clicking on the
name of the playing character, executes @CALL @AUTOPC after having loaded
the new configuration. If @AUTOPC doesn't exist, nothing will happen.

See also, Advanced programming.

WHAT TO DO IF A SERIES OF COMMANDS IS TOO LONG

If you need a very long sequence of commands, you can break it up in smaller
parts by using @CALL or, I prefer them, aliases.

By using aliases you avoid the need of defining a new variable containing the
commands you need. Furthermore, aliases let you use parameters without the need
of passing them with other variables.

See also, Advanced programming.

LOCAL VARIABLES

You often need routines that create intermediate results.
By using local variables you can create them on the fly without interfering

with variables with the same name declared externally.

See also, Advanced programming.

ALIASES UNVEILED

Let's define an aliasaliases with the following pattern 'test * *' and the
following only command '@%1a=%2a'. If we call this alias with '<test autoassist
1', we'll force ELF to execute '@autoassist=1'. In the same way, with '<test tempS
"duffy"' we'll force ELF to execute '@temps="pippo"'.

This feature can be very useful to specify which variable to use inside an alias
or where to put the result.

Combining this feature with local variables lets you define procedures much
like PASCAL and other high level languages.

EXAMPLE - PASCAL definition:
PROCEDURE DOUBLE(X:INTEGER;VAR D:INTEGER)

- ALIASaliases definition:
- pattern:

- double * *
- commands:

- @NLOCAL num
- @num=%1a*2
- @%2a=@num

- ALIASaliases uses:
- <double 27 result
- <double @num result <-- NOTE: @num is not altered

by this alias
- <double @num num <-- NOTE: since @num is a local

variable, the last
assignment changes
the local instance of
@num and not the
global one.

ATTENTION: That much flexibility has, obviously, its counterpart. If you use such
definitions, you'll have to pay a lot of attention issuing commands.
I.e.: if we would have issued '<double 27 5' instead of '<double 27
result', ELF would have sent to the MUD '@5=54', since it was
able to evaluate 27*2 (in the local @num variable, later correctly
substituted in '@%2a=@num'), but it couldn't find the '@5'
variable!

NOTE: to solve the problem showed by '<double @num num', you can define the

previous alias in this way:
- COMMANDS:

- @IF %2a="num"
- @SKIP 5
- @SKIP 0
- @NLOCAL num
- @num=%1a*2
- @%2a=@num
- @SKIP 99
- @NLOCAL num1
- @num1=%1a*2
- @%2a=@num1

See also, Advanced programming.

LAST TRIGGER

ELF is able to highlight the lines containing 'ti' and 'you' automatically.
It would be much prettier to highlight them by using triggers so to gain more

control over it.
EXAMPLE: I decide to change the color of a message (by removing the

original line and showing a new one with @OUTSTR) with a trigger. If the
message would contain 'you', ELF would highlight it by itself making unuseful my
previous color selection...

I can disable ELF's automatic highlighting and handle 'you' messages by
myself by using a trigger and putting it near the last trigger in the trigger list.

Now, if any trigger before the highlighter one decides to change the
appearance of a line, the only thing I will need is to set the last trigger flag on. In
this way the execution of triggers is stopped and the highlighter one is not checked.

See also, LAST TRIGGER TO CHECK IF ACTIVATED, Advanced
programming.

@SKIP AND @IF

@IF is mostly used together with @SKIP to skip a set of commands.
The @IF is executed when the following expression evaluates to 1.
To make the program smaller and somewhat faster, you can take advantage of

this feature:

@IF @ONLINE=0
@SKIP 0 <-- equals to --> @SKIP (@ONLINE=0)*5
@SKIP 5

If @ONLINE equals to 0, the result of @ONLINE=0 will be 1, that,
multiplied by 5, will lead to @SKIP 5. If @ONLINE is not 0, then @ONLINE=0
will result in 0, that, multiplied by 5, will lead to @SKIP 0.

See also, Advanced programming.

TRIGGER'S QUANTITY RELATED TO SPEED

ELF is not slowed down that much by the presence of a lot of triggers to
verify. What slows it down is executing the commands linked to verified triggers.

That means that I can have a lot of triggers seldom triggered without
interfering on ELF's speed. In this class of triggers are those used to set username
and password.

The triggers that mostly use ELF's resources are those activated by '*'.
ELF's slowdown can, obviously, be seen on slow computers and fast links.

See also, Advanced programming.

MOUSE AND SCROLL-BUFFER

It seems that you can define only two different functions linked to the mouse
pressed over the SCROLL-BUFFER, but this is not completely true!

You simply have to parametrize them...
Let's see how.
We want to parametrize the right mouse button.
Let's instruct ELF to assign the word under the cursor (over the scroll-buffer)

to the variable @TempS.
Now, let's define, on the vertical or the horizontal toolbar, some buttons that

assign different values to the @RAction variable.
In the variable @RAction we'll put what we want the right mouse button to

do.
Now we simply have to instruct ELF to auto-execute "@CALLmc_call

@RAction" when the right mouse button is pressed over the scroll-buffer.

EXAMPLE - definition of the right mouse button:
- variable to be assigned to:

TempS
- commands to be auto-executed:

- @IF @TempS=""
- @TempS="Elfred"
- @SKIP 0
- @CALL @RAction

- definition of one command activated by the mouse:
- name:

JUNK
- commands to be auto-executed:

- @mouse="JUNK"
- @RAction="junk @TempS"+@CHR(94)

HOW IT WORKS: - if the right button definition, the @IF is used so that if we
press it over a blank space, a special name is selected (here
is is Elfred); this is useful for such commands like "cast
'ARMOR' @TempS", because it allows to cast it on ourself
too

- the @mouse variables is useful if you monitorise it, so that
you can see what the mouse button will do

- @CHR(94) is the character that ELF uses to separate
commands. It can't be specified directly with #94 because it

would be translated to <ENTER> at the wrong moment...

See also, Advanced programming.

STATIC VARIABLES

Let's suppose to have defined a trigger that calculates how long we've been
on-line.

Such a trigger will store the starting hour in a variable and will calculate the
connection time when the connection will be lost.

If we change PC's configuration, the value of such a variable will be lost,
making our efforts unuseful.

If we define such a variable as a static one, its value will survive through the
configuration change.

Obviously the same variable should have to be used by the new
configuration :-)

See also, Advanced programming.

HOW TO NEST @WHILE-@WEND LOOPS

ELF doesn't allow you to nest @WHILE-@WEND loops in the same block of
commands. You can avoid this by using an alias.

EXAMPLE - main block:
- @NLOCAL x
- @x=1
- @WHILE @x<3
- <ExtAlias @x
- @x=@x+1
- @ENDW

- alias (ExtAlias *):
- @NLOCAL c
- @c=0
- @WHILE @c<%1a
- @OUTSTR "%1a."+@NTOS(@c+1)
- @c=@c+1
- @ENDW

- what happens:
- the first block of commands counts (@x) from 1 to 2 (2<3) and

calls the alias with @x as a parameter
- the alias will be called with "<ExtAlias 1" e "<ExtAlias 2" and

will output "1.1", "2.1" e "2.2".

See also, Advanced programming.

PROGRAMMING USER WINDOWS

With user windows you can do a lot of complex things. You can:

- show the result of a command in a non-volatile environment, remapping it and
filtering unwanted data (i.e.: the result of the STAT command on DikuMUDs is
quite long and indecipherable; you can store what you want with the colors you
like in a user window);

- automatically issue some commands and completely redirect the output to a user
window (i.e.: you might issue the WHO command every 5 minutes (handling it
with a timed trigger) and store the result in a user window for later reference);

- store your equipment and automatically give it to the super-guy for repairs with a
simple click on the item you like (when the left mouse button is pressed over a
user window, the alias '<OnWinClick WinId,xpos,ypos' is issued if defined);

- use a hidden user window as a vector. ELF has the ability to convert strings to
numbers, so you can define both string and numerical vectors. If you can define a
vector you can handle even arrays! With a couple of aliases (and @WPUT and
@WGET) it would be almost easy;

- define a list of players with different flags. I.e.: you might add the players found
with the WHO command to such a window and select if you want to highlight
their sentences in another user window or not (you can do this by adding some
spaces in front of the name and manipulating them when the '<OnWinClick' alias
is received);

- highlight what every member of your group says;
- much much more... (let me know about your ideas :-)).

Here is an alias that helps showing what every member of your group says:

Name: Group chat
Pattern: group *

Hypothesis: the parameter ('*') contains the name of the character.
the string variable @t contains the message issued by the player. You
have to trap it with a trigger.
If you like, you can define @t as a local string variable in the body of
the trigger.

@NLOCAL w define a local variable to store the id of
the user window

@SLOCAL h define a local variable that contains what

to put at the beginning of the line (used to
indent and to select colors). Let's call this
variable line header.

@h=@JUST("%1t",9,1)+"-#27[53m" set the first line header to the left justified
name of the player followed by a '-' sign
and the color for the body of the message

@w=@WOPEQ("Group Chat") open the window, but if it already exists,
then re-use it

@WHILE @t<>"" this @WHILE-@ENDW loop is used to
break the message in smaller parts, to
make it fit in a smaller window

@SKIP (@LEN(@t)>40)*3 if the length of the message now exceeds
40 chars, then skip the following 3
commands

@WADD @w,@h+@t output to the user window the line header
followed by the message

@t="" the message has been completely shown.
By setting it to "" causes the loop to end

@SKIP 2 skip the following 2 commands
@WADD @w,@h+@COPY(@t,1,40) output to the user window the line header

followed by the first 40 characters in the
message

@T=@COPY(@t,41,255) remove the first 40 characters from the
message

@h=" #27[53m" this line is executed in both the previous
cases. After the first line header, the
remaining ones will always contain spaces
and the color for the body of the message

@ENDW the end of the loop :-)

See also, Advanced programming.

Using mouse

Special actions can be linked to the mouse. There are two different behaviours
depending whether a button is pressed over the zone dedicated to the text received
from the MUD or on a user defined button.

Button pressed over the scroll-buffer
Button pressed on user buttons

BUTTON PRESSED OVER THE SCROLL-BUFFER

One can select the variable where to store the word UNDER the mouse.
Furthermore, a sequence of commands can be executed AFTER such assign.
Here is an example:
 - select to store the word in the variable @TempS
 - the command might be 'JUNK @TempS'
In this way it is very easy to junk useless things.

See also, Using mouse, Mouse and scroll-buffer.

BUTTON PRESSED ON USER BUTTONS

One can define user BUTTONS linked to user defined commands.

Using both behaviours leads to powerful mouse usage.
For example, one can store in the variable @ENEMY the word under the

mouse when the LEFT MOUSE BUTTON is pressed.
By defining user BUTTONS with commands like "BASH @enemy" and so

on, it is very easy to act only by mouse.

IMPORTANT: the commands linked to the mouse can be AUTO-EXECUTED. In
such a case, the input buffer is left untouched.
This means that one can have a command ready to be sent in the
input buffer and be able to send another command by using the
mouse.

User buttons can be enabled/disabled individually.
Disabled buttons disappear from the pad.
If there are too many buttons on a pad, the exceeding ones are disabled

automatically.

See also, Using mouse.

Configuration

@BEEP FILE
BEEP WHEN HIT
EXITS TEST
KEYS MODE
MESSAGES DURING DATA RECEIVE
REFRESH RATE
USE ALT KEY FOR MENU
LOCAL ECHO
TELNET ECHO
EXTENDED @INGROUP
DEFAULT PC NAME
DEFAULT PC EXTENSION
HISTORY STRATEGY
EXIT CONFIRMATIONS
LINES IN SCROLL-BACK BUFFER
LOG AUTO-SAVE INTERVAL
MAX LINE WIDTH

@BEEP FILE

The sound to be played when the meta-command @BEEP is issued.

See also, Configuration.

BEEP WHEN HIT

The sound to be played when the value of HP found in the prompt decreases.

See also, Configuration.

EXITS TEST

When playing MUD derived from DIKU (like ShadowDale and others), the
exits are shown preceded by some text. If set, for example, to "Exits:*", when ELF
receives "Exits: north east down" from the MUD, "north east down" will be
extracted and shown in the relative panel on top of the scroll-buffer.

When ELF will recognise the line containing the exits, the line right before it
will be also shown in the former panel. This is useful in DIKUmuds when moving
in BRIEF MODE ON, because that line contains the short description of the room
in which you are.

See also, Configuration.

KEYS MODE

You can select how the keyboard is redefined by ELF.
In "directions" mode, moving is privileged.
In "editing" mode, editing is privileged.
A table somewhere else in this manual show the keys definition.

See also, Configuration.

MESSAGES DURING DATA RECEIVE

When receiving data from the MUD, ELF will process a line at a time. After
every line, ELF will process Windows Messages to allow cooperative multitasking.

In this way, ELF slows down, but allows smooth operations.
On very slow systems it might be useful to raise this value.
Have some tests, but it is preferable to change the REFRESH RATE instead.

See also, Configuration.

REFRESH RATE

ELF will update the screen only when (almost) idle.
When a lot of lines are received at once this speeds up operations reducing

scrolling (which is a slow operation).
Anyhow, if the number of lines received is very high, then the visual result

might be ugly.
Setting REFRESH RATE to a value, instructs ELF to update the screen at

least every # of lines received.
A good value for this parameter seems to be between 5 and 15, but depends

highly on your system and your tastes :-)

See also, Configuration.

USE ALT KEY FOR MENU

Usually the ALT key is trapped by ELF to execute macros.
If you decide not to define macros containing the ALT key and prefer to use

the ALT keys for the standard Windows purpose, check this option on.

See also, Configuration.

LOCAL ECHO

ELF is something like a TELNET client. The local echo can be handled both
locally and remotely.

It is difficult to explain all the possibile combinations of ECHO that can arise
from the TELNET commands.

If you think to have problems with ECHO, try changing this option :-)

See also, Configuration.

TELNET ECHO

The TELNET protocol has some hidden commands. Some of them relate to
ECHO handling. The server can decide to enable/disable echo. If something goes
wrong (garbage over the link...) it is possible that the wrong state remains on.

With this option you can recover from this.

See also, Configuration.

EXTENDED @INGROUP

Older versions of ELF used a binary logic for the function
@INGROUP("member"). If member was really a member of your group,
@INGROUP returned 1, 0 otherwise.

If you choose to use EXTENDED SYNTAX, then 0 will be returned if not a
member, but, instead of 1, the position in the group will be returned if it is a
member.

See also, Configuration.

DEFAULT PC NAME

The name of the default Playing Character to be used by ELF.
Click over the edit box with the mouse to easily select the PC to be used.

See also, Configuration, Default PC extension.

DEFAULT PC EXTENSION

You can define (if you are a registered user) several configurations containing
different triggers, macros, aliases, variables. One for each Playing Character you
have.

These configurations are stored by ELF in files having specific extensions.
Choosing an extension to use, actually chooses the default configuration to be

used by ELF at startup.
Click over the edit box with the mouse to easily select the PC to be used.

See also, Configuration, Default PC name.

HISTORY STRATEGY

This option changes the behaviour of the history buffer.
I prefer the sequence mode, which is useful when repeating a long series of

commands.
Others prefer the simple mode.
Try them out and decide :-)))

See also, Configuration.

EXIT CONFIRMATIONS

When leaving ELF you can choose if ELF will ask you if you really want to
quit and/or edit untested translations.

See also, Configuration.

LINES IN SCROLL-BACK BUFFER

Sets the maximum number of lines used for the scroll-back buffer. The
highest value depends on your system and if you are registered or not :-)

If you set too high a value, ELF will automatically reduce it if any problem
arises.

See also, Configuration.

LOG AUTO-SAVE INTERVAL

If you are a registered users you can open a LOG file to store whatever arrives
to you from the MUD.

Like any other file, the LOG file is not actually saved to disk by Windows
until it is closed. This is the reason why a system crash might lead to a data loss.

This option lets you specify after how many seconds ELF will close and re-
open the log file, thus reducing data loss :-)

See also, Configuration.

MAX LINE WIDTH

ELF will split long lines in the scroll-buffer to fit this maximum line length.
Colors are preserved.

See also, Configuration.

PROMPT and TICK recognition

What is a TICK?
The way ELF recognises the TICK
What happens when TICK arrives

See also

PROMPT and TICK recognition

What is a TICK

Time on a MUD passes in a discrete way.
Every some seconds, the MUD recalculates several variables.
We name such a recalculation TICK.
When a TICK arrives, the MUD checks things like:

- hungriness
- thirstiness
- the effects of poisons
- if some spells have expired
- Health Point regain
- MANA regain.

Let's focus on MANA.
MANA is the mental power needed to cast spells and other (few) special

operations.
MANA regain happens at the end of a TICK and depends on what the playing

character is doing. When SLEEPING or RESTING, MANA regain is higher.
Sleeping, one can achieve the best MANA regain.

It is important to note that if one sleeps for a whole minute and wakes up just
before tick's arrival, sleeping was completely useless!

It is enough to sleep around the tick (right before and a little bit after).
ELF, if correctly set up, is able to tell WHEN the tick will be, allowing one to

sleep as little as possible, thus wasting less time.

See also, PROMPT and TICK recognition.

The way ELF recognises the TICK

With the PROMPT TEST, ELF is able to recognise the PROMPT sent by the
MUD.

Correctly defining the VARIABLE PART to be analysed, ELF is able to
isolate the numeric value of interest.

Analysing those values every time a prompt arrives from the mud, ELF
recognises when they increase, thus recognising a TICK.

Advanced tick recognition lets you fine tune this behaviour, to avoid that
some spells or special situations that might increase that value artificially lead to a
wrong tick recognition.

For example: gaining too much movement (for a refresh spell) would lead to a
tick recognition. It wouldn't if we set an upper limit to movement gaining. The
same applies to mana or healt points (if we decided to monitorise one of them).

There is a problem if the TICK arrives when MANA (or healt points or
movement) is at its maximum.

To avoid it, ELF comes with a trigger named "lower MANA" that must be set
so that it wastes MANA (or movement or healt points(!)) when it is at its
maximum.

As an added security, ELF informs you when the maximum value is reached
for the value monitorised with a message (but you can disable this feature). The
maximum values are guessed by elf automatically and will work mostly. Advanced
players that use different equipment from time to time might have varying values...
At present there is no easy way to work around this... Anyhow, expert players will,
probably, be expert enough to program some triggers to avoid this problem.

Use the PROMPT WIZARD in the GENERAL CONFIGURATION page for
easily setup prompt recognition. Not only you'll enable tick recognition, but you'll
have @MYMANA, @MYMOV and @MYHP automatically updated by ELF
itself.

See also, PROMPT and TICK recognition.

What happens when TICK arrives

By changing TICK ALERT (SECONDS) one can define how many seconds
before TICK's arrival, ELF must execute @CALL @PreTick.

5 seconds AFTER TICK's arrival, ELF executes @CALL @PostTick.
If @PreTick and/or @PostTick don't exits, the involved @CALL isn't

executed.

See also, PROMPT and TICK recognition.

Aliases used by ELF

ELF defines some aliases for internal use.

<OnConnect called when the connection with a MUD has
been established. You might use this alias to
initialise some variables or to enable some
triggers.

<OnDisconnect called when the connection with a MUD has
been lost. You might use this alias to disable
some triggers or, if you like, to automatically
reconnect to the last mud you were connected
to (with @CONNECT @LASTMUD). Please
note that if decide to automatically reconnect,
reconnection will take place even when you
wanted to close the connection. It might be
better to define a button to be used to
reconnect.

<OnWinClick window-id,x,y called when the left mouse button is pressed
over the user window identified by window-id.
X and Y are the coordinates of the mouse inside
the window. The coordinates are 0-based and
scaled by the font size used in the window. The
Y coordinate varies accordingly with the
scroller (if one).

<OnWinRClick window-id,x,y called when the right mouse button is pressed
over the user window identified by window-id.
X and Y are the coordinates of the mouse inside
the window. The coordinates are 0-based and
scaled by the font size used in the window. The
Y coordinate varies accordingly with the
scroller (if one).

<OnQuit called when ELF is about to shut down.

File programming basics

ELF lets you program aliases, triggers, macros, with a powerful language. A
powerful language must be able to handle files. ELF's programming language does.

To ease file handling, a few minor assumptions have been made.

The files are line oriented, that means that you can read or write a line at a
time.

A line can contain a string or a numeric value.
You can have several files open at the same time, but the number of

simultaneously opened files is not unlimited, so you have to keep track of them and
remember to close them.

There are meta commands and functions that allow you to open a file for
reading, writing or appending, to write a line of text, to read a number or a string
and to test the end of file condition.

Variables used by ELF

ELF uses some variables for internal use. Such variables are @CALLed in the
following cases:

@AutoExec right after program initialization
@AutoPC right after having loaded a new Playing Character configuration
@IdleProc when ELF has not much else to do :-)
@PostTick 5 seconds after tick detection (the delay is useful if you were

sleeping when the tick expired; in this way you are free to wake up,
eventually with a trigger :-))

@PreTick the number of seconds, that you specified in the configuration, before
the estimated tick arrives

@QuitPC right before loading a new Playing Character configuration

What happens when you register

- removed the 500 lines limit in SCROLL-BACK
- fully functional TRIGGER and ANSI wizard
- FIND in the SCROLL-BACK is enabled
- you will be able to define different Playing Characters' configurations
- you will be able to define several MUD connections
- the COMPASS will show 3 user-definable buttons.
- the running title stops and becomes personalised
- the running logo can be stopped
- the HOW TO button disappears
- you will be able to run multiple instances of ELF
- a message shows additional infos

ELF is NOT FREEWARE!
ELF is SHAREWARE :-)

ELF is the result of several months of playing, programming and testing, so I

think it is honest for me to ask for a reward :-)

By registering you'll get several bonuses :-)

The registration fee is 30 US DOLLARS.

VISA, MASTERCARD, American Express, US Checks, Invoice orders are
done through KAGI. Registration is achieved via a small program
(REGISTER.EXE) included in the distribution package that will create the actual
order form (using encrypted data). You should send such form to KAGI through
fax, mail or E-mail.

Another method is using the on-line registration (VISA, MASTERCARD,
American Express) form by connecting to http://order.kagi.com/?D6.

If you like, you can also use snail-mail. Snail-mail registrations can be sent
directly to the address below:

Alfredo Milani-Comparetti
Via Velino, 24
60100 - Ancona
Italy

If you use snail-mail, please include cash in a thick envelope. Send cash in US
dollars. Remember to include your internet address.

When you have done with the money, send me an e-mail to
MC3078@MCLINK.IT, specifying that you want to register ELFxWINSOCK
with the following data:

- your full name
- your address
- the version you are going to register (this is only for statistical purposes)
- your favourite nickname
- your favourite number (up to 9 digits)
- your E-MAIL address
- how you paid the registration fee

Notes...

As soon as a I will receive your payement, I will send to you an E-MAIL with
a small file (the registration data). You simply have to put that file in
ELFxWINSOCK's working directory. Nothing more, nothing less :-) As soon as
the registration file is in place, you'll get several bonuses.

The version number I ask you to send to me is only for statistical purposes.
You will be entitled to use ELFxWINSOCK forever (read README.DOC for
more information about this).

Your favourite number will be used, if possible, as a base number for your
registration code :-)

The registration will be used by every new version you will download, so you
will never have to wait for me to send an updated version: just pick it up and use
it :-)

IMPORTANT!!!

By registering ELF you will be entitled to use ELF on one computer at a time.
Only one user will be allowed to use it at the same time. You will be allowed to
open as many sessions as needed, but you'll have to be the only user.

If you plan to use ELF in a large structure, you'll have to register several
copies. In

such a case, please e-mail me. We'll find an agreement :-)

Here is a sample registration form:

ELF x WINDOWS's registration form

I have sent to you the necessary money to register ELF x WINSOCK in the
following form:

My full name is:
My address is:

The version I am using right now is:
My favourite nickname is:
My favourite (up to 9 digits) number is:
My E-MAIL address(es) is (are):

Notes and suggestions:

